Reaktionen an der BC-Doppelbindung von $i Pr_2 N = B = C(SiMe_3)_2$

Alexander Tapper, Thomas Schmitz und Peter Paetzold*

Institut für Anorganische Chemie der Technischen Hochschule Aachen, Templergraben 55, D-5100 Aachen

Eingegangen am 17. Oktober 1988

Keywords: Alkylidenoboranes / 1,2-Oxaboretanes / 1,2,4-Azasilaboretidines / 2,3-Diiminoboretane / Borylsilyldiazomethane

Das Alkylidenaminoboran $i Pr_2 N = B = C(SiMe_3)_2$ (1b) geht bei 500-600°C unter Propenabspaltung und Methylwanderung in das Azasilaboretidin $[-N(iPr) = B(Me) - CH(SiMe_3) - SiMe_2 -]$ (2) über. Protische Stoffe HX (X = Cl, Br, OMe, OiPr, NMe₂, NEt₂) addieren sich an 1b zu $i Pr_2 N = B(X) - CH(SiMe_3)_2 (3a-f);$ die Produkte 3g, h desselben Typs ($X = O - CR = CH_2$; R = t Bu, Ph) erhält man mit Ketonen MeRCO. Weiterhin kann man an 1b das unpolare Br₂ sowie LiMe unter Bildung von *i*Pr₂- $N = B(X) - C(SiMe_3)_2 - Y$ addieren [X = Y = Br: 4; X = Me,Y = Li(tmeda); 5]; 5 wird durch HCl zu 3i verseift (X = Me, Y = H). Die Bromoborierung von 1 b mit MeBBr₂ und BBr₃ führt $zu i Pr_2N = B(Br) - (Z)C(SiMe_3) - BBrMe (Z = SiMe_3; 6a; Z =$ SiMe₂Br: **6b**). Die CO-Gruppe von Aldehyden RCHO [$\mathbf{R} = \mathbf{M}e$, tBu, C(Me)=CH₂], Ketonen PhRCO (R = Me, Ph) und Ethylacetat geht mit der BC-Bindung von 1b [2+2]-Cycloadditionen zu den Oxaboretanen $[-B(NiPr_2)-C(SiMe_3)_2-CRR'-O-]$ (7a-f) ein; im Falle von HCONMe₂ folgt der Cycloaddition eine Silylverschiebung unter Ringöffnung zu (iPr₂N)B(OSiMe₃)- $C(SiMe_3) = CH(NMe_2)$ (8). Azide RN_3 ($R = Ph, PhCH_2$) addieren sich an 1b unter Abspaltung von N2 zu den Azaboriridinen $[-(i Pr_2N)B-C(SiMe_3)_2-NR-]$ (9a,b), während das Azid Me₃SiN₃ unter Silylwanderung die Diazoverbindung (iPr₂N)- $B[N(SiMe_3)_2] - C(SiMe_3) = N_2$ (10) ergibt. Mit t BuN \equiv C reagiert 1b im Verhältnis 2:1 zum Boretan $[-(i Pr_2N)B-C(SiMe_3)_2-$ C(=NtBu)-C(=NtBu)-] (11). Das Alkylidenaminoboran $H_{14}C_7N = B = C(SiMe_3)_2$ (1c, $H_{14}C_7N = 2,6$ -Dimethylpiperidino) bildet sich ähnlich und reagiert analog 1b: thermische Cyclisierung zum Azasilaboretidin 12, Addition von HNMe₂ zu 3j, [2+2]-Cycloaddition von RCHO ($\mathbf{R} = t \operatorname{Bu}$, Ph) und Ph₂CO zu 7g—i.

Zwei Alkylidenaminoborane vom Typ $R'_2N = B = CR_2$ mit kumulierten Allen-homologen Doppelbindungen sind bisher röntgenstrukturanalytisch charakterisiert worden, das Fluorenyliden(2,2,6,6-tetramethylpiperidino)boran $H_{18}C_9$ - $N = B = C_{13}H_8$ (1a)^{1,2)} und das [Bis(trimethylsilyl)methylen]-(diisopropylamino)boran $iPr_2N = B = C(SiMe_3)_2$ (1b)³⁾. Erwartungsgemäß beobachtet man Reaktionen beider Alkylidenaminoborane an der längeren BC-Bindung, und nicht an der BN-Bindung [1a: 142.4 und 135.3 pm; 1b: 139.1 und 136.3 pm]. Wir berichten hier über weitere Reaktionen der Titelverbindung 1b sowie über Bildung und Reaktionen der analog aufgebauten Verbindung $H_{14}C_7N = B = C(SiMe_3)_2$ (1c, $H_{14}C_7N = 2,6$ -Dimethylpiperidino). Reactions at the BC Double Bond of $iPr_2N = B = C(SiMe_3)_2$

By thermal elimination of propene and migration of a methyl group at 500-600 °C, the alkylidenoaminoborane $i Pr_2 N = B =$ $C(SiMe_3)_2$ (1b) is transformed to the azasilaboretidine [-N(iPr) = $B(Me) - CH(SiMe_3) - SiMe_2 -]$ (2). Protic agents HX (X = Cl, Br, OMe, OiPr, NMe₂, NEt₂) are added to 1b to give $i Pr_2 N = B$ - $(X) - CH(SiMe_3)_2$ (3a - f); products 3g, h of the same type (X = $O-CR=CH_2$, R = tBu, Ph) are formed from 1b and ketones MeRCO. Products $i Pr_2 N = B(X) - C(SiMe_3)_2 - Y [X = Y = Br]$. 4; X = Me, Y = Li(tmeda); 5] are isolated from the reaction of 1b with the unpolar Br₂ or with LiMe, respectively; adduct 5 can be hydrolyzed to 3i(X = Me, Y = H) by HCl. The bromoboration of 1b by MeBBr₂ or BBr₃ gives $iPr_2N = B(Br) - (Z)C(Si Me_3$)-BBrMe (Z = SiMe_3: 6a; Z = SiMe_2Br: 6b). The CO group of aldehydes RCHO [$R = Me, tBu, C(Me) = CH_2$], ketones PhRCO (R = Me, Ph), and ethyl acetate undergo a [2+2] cycloaddition with 1 b to give oxaboretanes $[-B(Ni Pr_2) C(SiMe_3)_2 - CRR' - O -]$ (7a-f); starting with HCONMe₂, the cycloaddition to 1b is followed by ring opening and the migration of a silvl group to yield $(i Pr_2N)B(OSiMe_3) - C(SiMe_3) =$ $CH(NMe_2)$ (8). Azides RN_3 (R = Ph, PhCH₂) may be added to 1b with loss of N₂, azaboriridines $[-(i Pr_2 N)B - C(SiMe_3)_2 - C(S$ NR - (9a, b) being formed, whereas Me_3SiN_3 gives the diazo compound $(i \operatorname{Pr}_2 \operatorname{N}) \operatorname{B}[\operatorname{N}(\operatorname{Si}\operatorname{Me}_3)_2] - \operatorname{C}(\operatorname{Si}\operatorname{Me}_3) = \operatorname{N}_2$ (10). The formation of the boretane $[-(i Pr_2N)B - C(SiMe_3)_2 - C(=NtBu) - C(SiMe_3)_2 - C(SiMe_3)_2$ C(=NtBu)-] (11) is observed from the 2:1 reaction of $tBuN \equiv C$ with 1b. The alkylidenoaminoborane $H_{14}C_7N = B = C(SiMe_3)_2 (1c;$ $H_{14}C_7N = 2,6$ -dimethylpiperidino) is synthesized by a procedure similar to the synthesis of 1b and gives reactions similar to those of 1b: thermal cyclisation to the azasilaboretidine 12, addition of HNMe₂ to give 3j, [2+2] cycloaddition of RCHO (R = tBu, Ph) and Ph₂CO to give 7g - i.

Verhalten von $i Pr_2 N = B = C(SiMe_3)_2$ beim Erhitzen

Die Verbindung 1b entsteht gemäß Gl. (1) durch Gasphasenthermolyse des entsprechenen (Trisilylmethyl)fluorborans³⁾. Als Nebenprodukt fällt die Verbindung 2 an, von der 1b durch Destillation abgetrennt werden kann. Während 1b als Flüssigkeit bis weit oberhalb 100°C thermisch stabil ist, also keineswegs an der BC-Bindung nach Art der Aminoiminoborane $R'_2N = B = NR^{40}$ cyclodimerisiert, lagert es sich in der Gasphase unter Abspaltung von Propen nach Gl. (1b) zu 2 um, wenn man es durch ein auf 500-600°C geheiztes Rohr leitet. Also entsteht 2 auch bei der Herstellung von 1b aus diesem als Nebenprodukt. Als optimale Temperatur für die Ausbeute an 1b fanden wir

Chem. Ber. 122 (1989) 595-601 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1989 0009-2940/89/0404-0595 \$ 02.50/0

520 °C. Zwar läßt sich 1b von 2 analysenrein abtrennen, jedoch kann man 2 durch Destillation von einem 5proz. Rest an 1b nicht befreien. Die Konstitution von 2 geht trotz der Verunreinigung durch das wohl charakterisierte 1b aus den spektroskopischen Daten unzweideutig hervor. Es ist nicht bekannt, ob die formal zu erkennenden Teilschritte von Reaktion (1b) – die Verschiebung von H und Me, die Bildung einer SiN- σ - auf Kosten einer BC- π -Bindung und die Abspaltung von Propen – gleichzeitig, hintereinander und in welcher Reihenfolge hintereinander ablaufen.

Additionen an die BC-Doppelbindung von $iPr_2N = B = C(SiMe_3)_2$

Hydrogenhalogenide, Alkohole und sekundäre Amine addieren sich an **1b** nach Gl. (2). HCl in Ether und HBr in Hexan reagieren dabei schnell bei -78 °C, MeOH und Me₂NH setzen sich in Hexan bei Raumtemperatur schnell um, *i*PrOH und Et₂NH in siedendem Hexan erst nach mehreren Tagen, und die sperrigen Stoffe *t* BuOH und *i*Pr₂NH addieren sich nach 3 Wochen in siedendem Hexan zu weniger als 10% an **1b**.

Die enolisierbaren Ketone tBu(Me)CO und Ph(Me)CO reagieren mit 1b formal als Enole, doch erscheint uns als Mechanismus dieser Addition ein En-Prozeß plausibel. Im Falle des Ketons Ph(Me)CO kann das Produkt 3h vom Cycloaddukt 7d nicht abgetrennt, wohl aber spektroskopisch charakterisiert werden. - Ähnlich wie an Iminoborane, speziell auch an Aminoiminoborane⁵⁾, lagert sich das unpolare Dibrom an 1b an [Gl. (3)]. Allerdings läßt sich das Dibrom-Addukt 4 vom Nebenprodukt 3b nicht abtrennen. Die Entstehung von 3b ist unklar und hängt stöchiometrisch wohl mit einem harzartigen weiteren Nebenprodukt zusammen. – Die Addition von Lithiummethanid an 1b in Gegenwart von Tetramethylethylendiamin (tmeda) führt zum nicht analysenrein gewinnbaren Produkt 5 [Gl. (4a)], das sich zum reinen Produkt 3i protolysieren läßt [Gl. (4b)]. – Schließlich kann man 1 b mit MeBBr₂ nach Gl. (5a) zu 6a bromoborieren, während sich ein entsprechendes einfaches Bromoborierungsprodukt mit BBr3 nicht fassen läßt, da ein Brom/Methyl-Austausch zwischen einem der Borund einem der Siliciumatome zur Bildung von 6b nach Gl. (5b) führt.

Die Konstitution der Produkte folgt aus eindeutigen Zuordnungen der chemischen Verschiebungen, Kopplungsmuster und Intensitäten der ¹H-, ¹¹B- und ¹³C-NMR-Signale. Auch bezüglich der Konfiguration und Konformation der Produkte lassen die NMR-Signale einige Schlüsse zu. Mit Ausnahme beider Aminogruppen in den Diaminoboranen **3e, f** ist die Drehbarkeit der *i*Pr₂N-Gruppe um die BN-Achse in allen Produkten bei Raumtemperatur behindert, da sich Signale im Verhältnis 1:1 für beide *i*Pr-Gruppen finden. Dagegen sind die beiden Aminogruppen in **3e, f** auch bei

-60°C noch frei drehbar. - Darüber hinaus sind die ¹Hund ¹³C-NMR-Signale der Produkte 3a-d und 3g-i in unterschiedlichen Intensitätsverhältnissen verdoppelt; die Koaleszenztemperatur für die ¹H-NMR-Signale liegt dabei im Falle von **3a**, i bei -30° C, bei **3b** bei $+30^{\circ}$ C und bei 3c, d, g, h oberhalb 100°C (Koaleszenz unter Zersetzung). Als Ursache der Aufspaltungen vermuten wir eine Konformationsisomerie hinsichtlich der zentralen BC-Bindung, so daß der durch die Kette NBCH definierte Diederwinkel entweder 0° oder 180° beträgt. Ist nun die sperrige Disilylmethylgruppe in ihrer Drehbarkeit um die BC-Achse erheblich behindert, so muß die Frage unbeantwortet bleiben, warum dies bei 3e, f und 4 nicht der Fall ist. - Im Falle von 6a wird ebenfalls eine Signal-Verdopplung und zwar im Verhältnis 1:1 beobachtet. Die Verdoppelung könnte auf eine Konformationsisomerie nach obigem Muster oder auf eine Orthogonalstellung der Bindungsebenen beider Boratome zurückzuführen sein, die das Molekül 6a chiral und die beiden SiMe₁- sowie die Me-Gruppen eines jeden iPr-Rests nichtäquivalent macht. Bei 6b ist noch die Asymmetrie des zentralen C-Atoms zu bedenken. Jedenfalls treten Isomere im Verhältnis 1:1 auf, wie man anhand der Verdoppelung der SiMe3- und BMe-Signale sowie der Vervierfachung der SiMe₂Br-Signale erkennt; von acht Me-Signalen für die *i*Pr₂N-Gruppe sind nur sechs aufgelöst.

Cycloadditionen mit $i Pr_2 N = B = C(SiMe_3)_2$

Die Reaktion von Benzaldehyd mit 1b haben wir schon beschrieben³⁾. Ebenso setzen sich drei ausgewählte weitere nicht enolisierbare Aldehyde mit 1b nach Gl. (6) zu den [2+2]-Cycloaddukten 7a – c um, darunter auch das doppelt ungesättigte Methacrolein, dessen CC-Doppelbindung also nicht an der Reaktion teilnimmt. Benzophenon reagiert nach demselben Schema und mit Acetophenon erhält man, wie oben dargelegt, ein Gemisch aus Cycloaddukt 7d und Enolyseprodukt 3h. Das wenig carbonylaktive Ethylacetat hat sich nach 7 Tagen bei 60°C nur zu 60% umgesetzt und zwar ebenfalls nach Gl. (6). - Die chiralen Produkte 7a - d, f mit eingeschränkter BN-Rotation sind ebenso wie das achirale 7e bemerkenswert stabil: Weder lösungsmittelfreies Erhitzen auf 200°C noch Erhitzen in siedendem Dodecan bewirken einen Zerfall, sei es in die Edukte von Gl. (6), sei es metathetisch in $R'RC = C(SiMe_3)_2$ und $(i Pr_2NBO)_3$, ganz im Gegensatz zu den entsprechenden Cycloaddukten des Fluorenylidenborans 1a¹⁾. Aus 7f hätten wir gern durch Abspaltung des Silans EtOSiMe₁ das entsprechende Oxaboret gewonnen, aber in siedendem Toluol gelingt dies nicht, und bei höheren Temperaturen zersetzt sich 7f unkontrolliert. - Anders als gewöhnliche Carbonylverbindungen setzt sich Dimethylformamid mit 1 b um, nämlich unter CO-Spaltung und Silyl-Wanderung nach Gl. (7) zum acyclischen Produkt 8, möglicherweise über eine Zwischenstufe vom Typ 7. Der Umstand, daß die ¹H- und ¹³C-NMR-Spektren vier Me-Signale für i Pr₂N, aber nur eines für NMe₂ ergeben, läßt auf folgende stereochemische Situation schließen: Die *i*Pr₂N-Gruppe ist im Gegensatz zur NMe₂-Gruppe nicht frei drehbar; die Konfiguration an der CC-Doppelbindung ist einheitlich; die olefinische Bindungsebene und die um das Boratom stehen aufeinander senkrecht und ergeben Chiralität.

Ebenso wie das Fluorenylidenboran 1a¹⁾ geht auch 1b mit Phenylazid keine [2 + 3]-Cycloaddition ein, wie wir sie bei den Iminoboranen $X - B \equiv NR$ kennen⁴, vielmehr gelangt man unter Abspaltung von N2 zum Azaboriridin 9a und ebenso mit Benzylazid zu 9b [Gl. (8)]. - Trimethylsilylazid reagiert mit 1a auf dieselbe Weise¹, im Gegensatz dazu jedoch mit 1b, wie schon berichtet³⁾, zu einem 1:1-Addukt ohne Abspaltung von N2. Diesem 1:1-Addukt hatten wir in Übereinstimmung mit spektroskopischen Daten die Konstitution eines Triazaborolins 10', also eines [2 + 3]-Cycloaddukts, zugeschrieben. Dieselben spektroskopischen Daten sind jedoch auch mit einem acyclischen Molekül vom Typ 10 verträglich, das sich aus dem cyclischen Isomeren durch Wanderung einer Silylgruppe und Öffnung einer NN-Bindung nach Gl. (9b) bilden könnte. Eine derartige Isomerisierung unter Ringöffnung ist von den [2 + 3]-Cycloaddukten aus Alkylidensilanen Me₂Si = C(SiMe₃)₂ und Aziden RN₃ unlängst bekannt geworden, wiewohl hierbei im

Falle $R = SiMe_3$ die Isomerisierung zu $(Me_3Si)_2N - Me_2Si -$ $C(SiMe_3) = N_2$ mit der Cycloreversion zu $(Me_3Si)_2C = N_2$ und $Me_2Si = N - SiMe_3$ und Folgeprodukten konkurriert⁶). Daß die Konstitution 10 für das Endprodukt in Gl. (9) zutrifft, schließen wir jetzt aus der charakteristischen starken IR-Bande bei 2041 cm^{-1} , die eine Diazogruppe anzeigt und das Triazaborolin 10' ausschließt. Übrigens hat die Isomerisierung nach Gl. (9b) formale Verwandtschaft mit der ebenfalls hypothetischen Isomerisierung nach Gl. (7b). - Das Carben-ähnliche tert-Butylisonitril addiert sich im Verhältnis 2:1 an 1b und ergibt dabei nach Gl. (10) das Boretan 11. Da sich auch im Unterschuß des Isonitrils ausschließlich 11 bildet, nehmen wir an, daß ein primäres 1:1-Addukt zwischen 1b und tBuNC schneller mit weiterem tBuNC als dieses mit 1b reagiert. Das ebenso wie 1b ungesättigte Disilaethen $Xyl_2Si = SiXyl_2$ (Xyl = 2,6-Dimethylphenyl) geht mit dem Isonitril XylN = C eine 1:1-Umsetzung zum entsprechenden Dreiring ein⁷).

Bildung und Reaktionen von [Bis(trimethylsilyl)methylen]-(2,6-dimethylpiperidino)boran

Das Alkylidenaminoboran 1c bildet sich durch eine zur Bildung von 1b analoge thermische Eliminierung [(Gl. (11)]. Der Unterschied im Aufbau von 1b und 1c besteht lediglich darin, daß in 1c eine Methylen-Gruppe die für 1b typischen Isopropylgruppen verbrückt. Das zu 2 analoge Nebenprodukt 12 ist zu 1c isomer, da sich wegen der Verbrückung der beiden Liganden am N-Atom kein Olefin abspalten

kann. Da sich die Produkte 1c und 12 nicht voneinander trennen lassen, wurde ein 3:1-Gemisch eingesetzt, um beide zu charakterisieren, um weiterhin nach Gl. (12) Dimethylamin an 1c zu addieren und um nach Gl. (13) eine [2 + 2]-Cycloaddition mit drei Carbonyl-Verbindungen zu erzielen. Dabei beobachtet man, daß die zu 7b, 7e analogen Produkte 7g, 7i ebenso wie 7h eine bei Raumtemperatur nicht frei um die BN-Bindung drehbare Piperidino-Gruppe enthalten, im Gegensatz zum Diaminoboran 3j, dem Analogon zu 3e.

Experimenteller Teil

NMR-Spektren (in CDCl₃): Bruker WP 80 SY (¹H), Bruker WH 270 (¹³C), Jeol JNM-PS-100 (¹¹B). Alle Substanzen müssen in wasser- und sauerstofffreien Medien gehandhabt werden.

1-Isopropyl-2,2,4-trimethyl-3-trimethylsilyl-1,2,4-azasilaboretidin (2): Bei der Herstellung von [Bis(trimethylsilyl)methylen](diisopropylamino)boran (1b) fällt man dieses bei -80° C aus Pentan³⁾. Aus der Mutterlauge gewinnt man durch Destillation bei Sdp. 38°C/0.5 Torr das Produkt 2, das noch Reste von 1b enthält. Leitet man 0.52 g (1.9 mmol) reines 1b bei 560°C durch ein mit Quarzglasscherben beschicktes Quarzrohr, so erhält man 0.21 g einer Mischung aus 2 und 1b im Verhältnis 20: 1 (46% 2). 2 wird in dieser Mischung NMR-spektroskopisch in C₆D₆ charakterisiert. - ¹H-NMR: $\delta = -0.21$ (s, 1 H, BCH), 0.10 (s, 9 H, SiMe₃), 0.24, 0.31 (2s, je 3 H, SiMe₂), 0.47 (s, 3 H, BMe), 0.97 (d, J = 6.5 Hz, 6 H, NCMe), 3.40 (sept, J = 6.5 Hz, 1 H, NCH). - ¹¹B-NMR: $\delta = 48.5$. - ¹³C-NMR: $\delta = 1.7$ (q, SiMe₃), 3.5, 3.7 (2 q, SiMe₂), 10.8 (d, BCH), 25.7, 26.4 (2 q, NCMe), 45.5 (d, NC).

[Bis(trimethylsilyl)methyl]chlor(diisopropylamino)boran (3a), [Bis(trimethylsilyl)methyl]brom(diisopropylamino)boran (3b), [Bis(trimethylsilyl)methyl](diisopropylamino)methoxyboran (3c), [Bis(trimethylsilyl)methyl](diisopropylamino)isopropyloxyboran (3d), [Bis(trimethylsilyl)methyl](diisopropylamino)(dimethylamino)boran (3e), [Bis(trimethylsilyl)methyl](diethylamino)(diisopropylamino)boran (3f), [Bis(trimethylsilyl)methyl](1-tert-butylethenyloxy)(diisopropylamino)boran (3g), [Bis(trimethylsilyl)methyl]-(diisopropylamino)(1-phenylethenyloxy)boran (3h), [Bis(trimethylsilyl)methyl](diisopropylamino)methylboran (3i), [Bis(trimethylsilyl)methyl](dimethylamino)(2,6-dimethylpiperidino)boran (3j): Die nach Gl. (2), (4b) und (12) eingesetzten Mengen an 1b, 5 bzw. 1c sowie an HX gehen aus Tab. 1 hervor. Im Falle von 3a, i werden 1b bzw. 5 in 15 ml Ether vorgelegt, und es wird eine 0.25 м Lösung von HCl in Ether bei -78 °C zugegeben; ansonsten werden 1b, c in ca. 10 ml Hexan vorgelegt, und HX wird bei Raumtemp. zugegeben; HBr wird stattdessen bei -196 °C und HNMe₂ bei -78 °C zu 1b kondensiert. Die Reaktionslösungen werden 15 h bei Raumtemp., im Falle der Umsetzung von 1b mit HOi Pr und HNEt₂ aber 3 bzw. 7d unter Rückfluß und im Falle der Umsetzung mit den Ketonen tBu(Me)CO und Ph(Me)CO je 70 h bei 50°C gerührt. Dann werden alle flüchtigen Anteile bei Raumtemp. i. Vak. abgezogen. Die Rohprodukte 3a, b, e, h-j werden in Pentan aufgenommen und kristallisieren bei -80° C rein aus. Im Falle von 3h kristallisiert ein Gemenge aus 57% 3h und 43% 7d, in dem der 7d-Anteil bei wiederholter Kristallisation aus Pentan ansteigt; die isomeren Komponenten lassen sich unter Zuhilfenahme von Vergleichsspektren für den Substanztyp 3 und 7 sowie wegen der unterschiedlichen Intensitäten NMR-spektroskopisch im Gemenge analysieren. Das Produkt 3c wird bei 53-55°C/0.005 Torr destilliert. Die Produkte 3d, f, g lassen sich bei 0.005 Torr sublimieren und zwar bei 35-50, 50-65 bzw. 55-70°C. Alle weiteren experimentellen Angaben finden sich in Tab. 1.

Brom[brombis(trimethylsilyl)methyl](diisopropylamino)boran (4): Man vereint in 5 ml Hexan bei $-78 \,^{\circ}$ C 0.85 g (3.2 mmol) 1b und 0.51 g (3.2 mmol) Brom, engt bei Raumtemp. i. Vak. ein und kristallisiert aus Pentan bei $-80 \,^{\circ}$ C eine farblose, feste Mischung aus 4 (79%) und dem in reiner Form schon charakterisierten 3b (21%). – Für die Anwesenheit von 2 Br-Atomen in 4 beweisend sind die MS-Molekülpeaks bei m/z = 426 bis 431 [2%, bezogen auf $m/z = 260, 262 \,(M^+ - Me - Me_3SiBr, 100\%)$] mit ihrer für die Anwesenheit von BBr₂ charakteristischen Intensitätsfolge. – ¹H-NMR ($-30 \,^{\circ}$ C): $\delta = 0.27$ (s, 18H, SiMe₃), 1.13, 1.42 (2d, J =6.6, 7.0 Hz, je 6H, NCMe), 3.35, 4.65 (2 sept, J = 7.0, 6.6 Hz, je 1 H, NCH). – ¹¹B-NMR: $\delta = 36.4. - {}^{13}$ C-NMR ($-30 \,^{\circ}$ C): $\delta = 2.6$ (q, SiMe₃), 21.9, 24.2 (2q, NCMe), 42.4 (s, BC), 48.1, 50.8 (2d, NCH).

{[1,2-Bis(dimethylamino)ethan]lithio][(diisopropylamino)methylboryl]bis(trimethylsilyl)methan (5): Zu 0.82 g (3.0 mmol) 1b in 5 ml Ether gibt man bei $-78 \,^{\circ}$ C 1.9 ml einer 1.6 M Lösung von LiMe in Ether und 0.35 g (3.0 mmol) Tetramethylethylendiamin. Nach 15 h Rühren bei Raumtemp. kann man bei $-80 \,^{\circ}$ C 0.65 g 5 in nicht analysenreiner Form gewinnen. Mit den folgenden NMR-Daten (C₆D₆) läßt sich 5 jedoch charakterisieren. - ¹H-NMR: $\delta = 0.37$ (s, 18H, SiMe₃), 0.47 (s, 3H, BMe), 1.33 (d, 12H, NCMe), 1.64 (m_c, 4H, NCH₂), 1.88 (s, 12H, NMe₂), 4.25 (m_c, 2H, NCH). - ¹¹B-NMR: $\delta = 45.5 -$ ¹³C-NMR: $\delta = 7.7$ (q, SiMe₃), 24.7 (q, NCMe), 46.1 (d, NCH), 46.6 (q, NMe₂), 57.3 (t, NCH₂).

Brom{[brom(methyl)boryl]bis(trimethylsilyl)methyl](diisopropylamino)boran (6a): Nachdem man eine Mischung aus 2.10 g (7.8 mmol) 1b und 1.45 g (7.8 mmol) Dibrom(methyl)boran⁸⁾ 15 h bei Raumtemp. gerührt hat, kann man aus Pentan bei -80 °C 6a gewinnen und zwar nach dreimaliger Kristallisation 1.53 g (43%) in farbloser Form, Zers.-P. 112 °C. - ¹H-NMR: $\delta = 0.35$ (s, 18H, SiMe₃), 1.13, 1.19, 1.51 (3d im Verhältnis 1:1:2, J = 6.2, 6.2, 7.0Hz, 12H, NCMe), 1.24 (s, 3H, BMe), 3.1 - 3.6 (2H, NCH). - ¹¹B-NMR: $\delta = 37.0, 73.3. -$ ¹³C-NMR (-30 °C): $\delta = 4.3, 4.9$ (2q, SiMe₃), 21.5, 23.1, 23.5, 23.6 (4q, NCMe), 41.2 (s, BCB), 47.5, 53.6 (2d, NCH).

Brom{(bromdimethylsilyl)[brom(methyl)boryl](trimethylsilyl)methyl}(diisopropylamino)boran (6b): Ebenso erhält man aus 1.20 g (4.5 mmol) 1b und 1.23 g (4.9 mmol) Bortribromid 1.23 g (53%) farbloses 6b, Zers. > 60 °C. – ¹H-NMR: δ = 0.41, 0.44 (2s, 9H, SiMe₃), 0.92, 0.96, 0.99, 1.02 (4s, 6H, 2 Me von SiMe₂Br), 1.14, 1.17, 1.21, 1.24, 1.50, 1.51 (6d im Verhältnis 1:1:1:1:2:2, 12H, NCMe; 2 Isomere mit je 4 nicht äquivalenten Me-Resten in der N*i*Pr₂-Gruppe), 1.33, 1.43 (2s, 3H, BMc), 3.1–3.7 (2H, NCH). – ¹¹B-NMR: δ = 35.9, 76.6. – Die Molekülpeaks bei m/z = 516 bis 523 [3% bezogen auf m/z = 380 etc. (M⁺ – Me₂SiBr, 100%)] weisen die für die Gruppierung B₂Br₃ charakteristische Intensitätsfolge auf.

 $\begin{array}{cccccccc} C_{13}H_{32}B_2Br_3NSi_2 \ (519.9) & Ber. \ C \ 30.03 & H \ 6.20 & N \ 2.69 \\ & Gef. \ C \ 30.07 & H \ 6.38 & N \ 2.70 \end{array}$

2-(Diisopropylamino)-4-methyl-3,3-bis(trimethylsilyl)-1,2-oxaboretan (**7a**), 4-tert-Butyl-2-(diisopropylamino)-3,3-bis(trimethylsilyl)-1,2-oxaboretan (**7b**), 2-(Diisopropylamino)-4-(methylethenyl)-3,3-bis(trimethylsilyl)-1,2-oxaboretan (**7c**), 2-(Diisopropylamino)-4methyl-4-phenyl-3,3-bis(trimethylsilyl)-1,2-oxaboretan (**7d**), 2-(Diisopropylamino)-4,4-diphenyl-3,3-bis(trimethylsilyl)-1,2-oxaboretan (**7e**), 2-(Diisopropylamino)-4-ethoxy-4-methyl-3,3-bis(trimethylsilyl)-1,2-oxaboretan (**7f**), 4-tert-Butyl-2-(2,6-dimethylpiperidino)-3,3bis(trimethylsilyl)-1,2-oxaboretan (**7g**), 2-(2,6-Dimethylpiperidino)-4-phenyl-3,3-bis(trimethylsilyl)-1,2-oxaboretan (**7h**), 2-(2,6-Dimethylpiperidino)-4,4-diphenyl-3,3-bis(trimethylsilyl)-1,2-oxaboretan (**7i**): Die nach Gl. (6) bzw. (13) umgesetzten Mengen an **1b, c** und

Tab. 1. Experimentelle Daten zu den Boranen $R_2N = B(X) - CH(SiMe_3)_2$ (3a - j): Eingesetzte Mengen, Ausbeuten, Schmelzpunkte, Isomerenanteile, ¹H-, ¹¹B-, ¹³C-NMR-Verschiebungen (in ppm; durch Querstrich getrennte Werte gehören zu den Isomeren I und II), Summenformeln, Molmassen und mikroanalytisch bestimmte C-, H-, N-Werte

	3a ^{a)}	3b ^b)	3c ^{c)}	3d ^{d)}	3e ^{e)}
Edukt 1b,c [g/mmol]	.b,c [g/mmol] 2.18/8.1		1.50/5.6	0.96/3.6	1.65/6.1
Edukt HX [g/mmol]	0.30/8.2	0.27/3.3	0.40/12	0.21/3.5	0.90/20
Ausbeute [g/%]	1.90/79	0.50/43	0.31/18		1.61/84
Schmp. [°C]	43	44 38		132	83
Isomere I, II [%/%]	83/17	53/47	50/50	90/10	/
H-NMR, SiMe, (s)	0.02/0.04	0.06/0.04	0.12/0.14	0.13/0.16	0.07
- NCMe(d) k	1.05/1.00	1.08/1.01	0.93/0.95	0.98	1.18
	1.30/1.13	1.38/1.24	1 33	1 32	1 18
- NCH (gent) k)	3 27/3 2-3 4	2 2 2 2 6	2,22	2 07	2 4 2
- MCH (Sept)	2 02/1 57	1 00/1 70	2.7-3.0	2.57	2 4 2
	3,72/4,J/ 0,22/0 50	4.00/4.70	2.7-3.0	3,30	3.43
	0.32/0.30	0.03/0.03	-0.06/0.04		0.24
- Me von X	/	/	3.21/3.40(8)	1.08/1.13(d)	2.59(8)
B-NMR (S)	39.2	3/.1	32.0	31.4	33.0
-C-NMR, SiMe ₃ (q)	1.9/1.0	2.0/2.3	2.4	2.//1.0	3.1
- NCMe (q) K'	21.1	21.0	21.9/22.7	22.8	25.1
• •	23.5	23.7/25.1	23.6/24.0	25.0	25.1
- NC (d) K	45.5/44.7	46.3/45.1	43.6/44.0	43.8	46.3
	50.5/50.0	51.2/53.0	47.3/48.0	47.4	46.3
- BC	16.6	19.0	5.7	6.0	9.2
- Me von X (q)	1	/	51.5/53.4	24.0/25.9	41.6
Formel	C13H33BClNSi2	C13H33BBrNSi2	C14H36BNOSiz	CieH40BNOSiz	C15H39BN2Si2
M [q/mol]	305.8	350.3	301.4	329.5	314.5
C Ber./Gef.	51.05/50.63	44.57/44.56	55.79/55.87	58.33/58.13	57.29/56.67
H Ber./Gef.	10.88/10.62	9.50/9.96	12.04/12.17	12.24/12.71	12.50/12.30
N Ber./Gef.	4.58/4.33	4.00/3.96	4.65/4.95	4.25/4.38	8.91/8.76
	3f f)	3g ^{g)}	3h ^{h)}	3i ⁱ⁾	3j ^{j)}
Edukt 1b c [c/mcl]	3f f	3g g)	3h ^h)	3i i)	3j j)
Edukt 1b,c [g/mmo]]	3f f) 1.30/4.8	3g ^{g)} 1.02/3.8	3h h)	3i ⁱ⁾ 2.10/5.2	3j j) 1.52/5.4
Edukt 1b,c [g/mmol] Edukt HX [g/mmol]	3f f) 1.30/4.8 0.70/9.6	3g g) 1.02/3.8 0.38/3.8	3h h) 0.90/3.3 0.40/3.3	3i ⁱ⁾ 2.10/5.2 0.56/15.4	3j j) 1.52/5.4 0.64/14.2
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%]	3f f) 1.30/4.8 0.70/9.6 1.05/64	3g g) 1.02/3.8 0.38/3.8 0.57/41	3h h) 0.90/3.3 0.40/3.3 0.52/40	3i i) 2.10/5.2 0.56/15.4 1.11/75	3j j) 1.52/5.4 0.64/14.2 0.44/25
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C]	3f f) 1.30/4.8 0.70/9.6 1.05/64	3g g) 1.02/3.8 0.38/3.8 0.57/41 59-61	3h h) 0.90/3.3 0.40/3.3 0.52/40	3i i) 2.10/5.2 0.56/15.4 1.11/75 15	3j j) 1.52/5.4 0.64/14.2 0.44/25 <0
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%]	3f f) 1.30/4.8 0.70/9.6 1.05/64 /	3g g) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15	3j j) 1.52/5.4 0.64/14.2 0.44/25 <0 /
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] [*] H-NMR, SiMe ₃ (s)	3f f) 1.30/4.8 0.70/9.6 1.05/64 / / 0.07	3g g) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03	3j j) 1.52/5.4 0.64/14.2 0.44/25 <0 / 0.07
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] ¹ H-NMR, SiMe ₃ (s) - NCMe (d) k)	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17	3g g) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11	3j j) 1.52/5.4 0.64/14.2 0.44/25 <0 / 0.07 1.24
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] ² H-NMR, SiMe ₃ (s) - NCMe (d) k)	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17	3g g) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19	3j j) 1.52/5.4 0.64/14.2 0.44/25 (0 / 0.07 1.24 1.24
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] ² H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCH (sept) k)	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 3.45	3g g) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc)	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50	3j j) 1.52/5.4 0.64/14.2 0.44/25 (0 / 0.07 1.24 1.24 3.60
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] ¹ H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCH (sept) k)	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 3.45 3.45	3g g) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc) 3.64(mc)	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23 3.64	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50 3.88	3j j) 1.52/5.4 0.64/14.2 0.44/25 (0 / 0.07 1.24 1.24 3.60 3.60
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] ¹ H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCH (sept) k) - BCH (s)	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 3.45 3.45 0.23	3g 9) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc) 3.64(mc) 0.19	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23 3.64	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50 3.88 0.31	3j j) 1.52/5.4 0.64/14.2 0.44/25 <0 / 0.07 1.24 1.24 1.24 3.60 3.60 0.37
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] ¹ H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCH (sept) k) - BCH (s) - Me von X	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 1.17 3.45 3.45 0.23 0.99(t)	3g 9) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc) 3.64(mc) 0.19 1.09(s)	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23 3.64 /	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50 3.88 0.31 0.39(s)	3j j) 1.52/5.4 0.64/14.2 0.44/25 <0 / 0.07 1.24 1.24 1.24 3.60 3.60 0.37 2.61(g)
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] "H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCMe (d) k) - NCH (sept) k) - BCH (s) - Me von X "B-NMR (s)	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 3.45 3.45 0.23 0.99(t) 36.9	3g 9) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc) 3.64(mc) 0.19 1.09(s) 33.1	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23 3.64 / *33	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50 3.88 0.31 0.39(s) 45.4	3j j) 1.52/5.4 0.64/14.2 0.44/25 (0 0.07 1.24 1.24 1.24 3.60 3.60 0.37 2.61(s) 35.4
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] ¹ H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCH (sept) k) - BCH (s) - Me von X ¹³ B-NMR (s) ¹³ C-NMR, SiMe ₃ (g)	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 3.45 3.45 3.45 0.23 0.99(t) 36.9 2.8	3g g) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc) 3.64(mc) 0.19 1.09(s) 33.1 3.2/2.7	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23 3.64 / *33 2.7/1.1	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50 3.88 0.31 0.39(s) 45.4 2.3/0.8	3j j) 1.52/5.4 0.64/14.2 0.44/25 (0 / 0.07 1.24 1.24 3.60 3.60 0.37 2.61(s) 35.4 2.9
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] ¹ H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCH (sept) k) - BCH (s) - Me von X ¹¹ B-NMR (s) ¹³ C-NMR, SiMe ₃ (q) - NCMe (g) k)	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 3.45 3.45 0.23 0.99(t) 36.9 2.8 24.8	3g g) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc) 3.64(mc) 0.19 1.09(s) 33.1 3.2/2.7 22.6/21 3	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23 3.64 / *33 2.7/1.1 22.6	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50 3.88 0.31 0.39(s) 45.4 2.3/0.8 21.6	3j j) 1.52/5.4 0.64/14.2 0.44/25 <0 / 0.07 1.24 1.24 3.60 3.60 0.37 2.61(s) 35.4 2.9 24 1
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] "H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCH (sept) k) - BCH (s) - Me von X "1B-NMR (s) "3C-NMR, SiMe ₃ (q) - NCMe (q) k)	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 1.17 3.45 3.45 0.23 0.99(t) 36.9 2.8 24.8 24.8 24.8	3g g) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc) 3.64(mc) 0.19 1.09(s) 33.1 3.2/2.7 22.6/21.3 24.0/25 5	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23 3.64 / *33 2.7/1.1 22.6 24.3	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50 3.88 0.31 0.39(s) 45.4 2.3/0.8 21.6 24.6(25.7)	3j j) 1.52/5.4 0.64/14.2 0.44/25 <0 / 0.07 1.24 1.24 1.24 3.60 3.60 0.37 2.61(s) 35.4 2.9 24.1 24.1
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] ¹ H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCH (sept) k) - BCH (s) - ME von X ¹¹ B-NMR (s) ¹³ C-NMR, SiMe ₃ (q) - NCMe (q) k) - NC (d) k)	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 1.17 3.45 3.45 0.23 0.99(t) 36.9 2.8 24.8 24.8 24.8 24.8 24.8	3g 9) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc) 3.64(mc) 0.19 1.09(s) 33.1 3.2/2.7 22.6/21.3 24.0/25.5 44.0/22.8	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23 3.64 / *33 2.7/1.1 22.6 24.3 44.0	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50 3.88 0.31 0.39(s) 45.4 2.3/0.8 21.6 24.6/25.7 44.6/25.7	3j j) 1.52/5.4 0.64/14.2 0.44/25 <0 / 0.07 1.24 1.24 1.24 3.60 3.60 0.37 2.61(s) 35.4 2.9 24.1 24.1 24.1 24.1
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] "H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCH (sept) k) - BCH (s) - ME von X "B-NMR (s) "3C-NMR, SiMe ₃ (q) - NCMe (q) k) - NC (d) k)	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 3.45 3.45 0.23 0.99(t) 36.9 2.8 24.8 24.8 24.8 24.8 46.4	3g 9) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc) 3.64(mc) 0.19 1.09(s) 33.1 3.2/2.7 22.6/21.3 24.0/25.5 44.0/43.8 49.0/46.6	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23 3.64 / *33 2.7/1.1 22.6 24.3 44.0 48.0	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50 3.88 0.31 0.39(s) 45.4 2.3/0.8 21.6 24.6/25.7 44.6/44.0 49.6	3j j) 1.52/5.4 0.64/14.2 0.44/25 (0 0.07 1.24 1.24 1.24 3.60 3.60 0.37 2.61(g) 35.4 2.9 24.1 24.1 47.7 47.7
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] 'H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCH (sept) k) - BCH (s) - MCH (s) 'B-NMR (s) 'B-NMR (s) 'B-NMR (s) 'B-NMR, SiMe ₃ (q) - NCMe (q) k) - NC (d) k)	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 3.45 3.45 3.45 0.23 0.99(t) 36.9 2.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8	3g 9) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc) 3.64(mc) 0.19 1.09(s) 33.1 3.2/2.7 22.6/21.3 24.0/25.5 44.0/43.8 48.0/46.6	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23 3.64 / *33 2.7/1.1 22.6 24.3 44.0 48.0 7.1	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50 3.88 0.31 0.39(s) 45.4 2.3/0.8 21.6 24.6/25.7 44.6/44.0 48.8/49.6 16 2122	3j j) 1.52/5.4 0.64/14.2 0.44/25 (0 0.07 1.24 1.24 3.60 3.60 0.37 2.61(s) 35.4 2.9 24.1 24.1 47.7 47.7
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] ¹ H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCH (sept) k) - BCH (s) ¹ B-NMR (s) ¹ B-NMR (s) ¹ C-NMR, SiMe ₃ (q) - NCMe (q) k) - NC (d) k) - BC	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 3.45 3.45 0.23 0.99(t) 36.9 2.8 24.8 24.8 24.8 24.8 46.4 46.4 9.5 14.4	3g 9) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc) 3.64(mc) 0.19 1.09(s) 33.1 3.2/2.7 22.6/21.3 24.0/25.5 44.0/43.8 48.0/46.6 7.2 20.0/28.7	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23 3.64 / *33 2.7/1.1 22.6 24.3 44.0 48.0 7.1	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50 3.88 0.31 0.39(s) 45.4 2.3/0.8 21.6 24.6/25.7 44.6/44.0 48.8/49.6 16.7/12.2	3j j) 1.52/5.4 0.64/14.2 0.44/25 (0 / 0.07 1.24 1.24 3.60 3.60 0.37 2.61(s) 35.4 2.9 24.1 24.1 47.7 47.7 41.8
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] ¹ H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCH (sept) k) - BCH (s) - Me von X ¹ B-NMR (s) ¹ C-NMR, SiMe ₃ (q) - NCMe (q) k) - NC (d) k) - BC - Me von X (q)	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 1.17 3.45 3.45 0.23 0.99(t) 36.9 2.8 24.8 2	3g 9) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc) 3.64(mc) 0.19 1.09(s) 33.1 3.2/2.7 22.6/21.3 24.0/25.5 44.0/43.8 48.0/46.6 7.2 29.0/28.7 C. H. PROFÉ	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23 3.64 / *33 2.7/1.1 22.6 24.3 44.0 48.0 7.1 /	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50 3.88 0.31 0.39(s) 45.4 2.3/0.8 21.6 24.6/25.7 44.6/44.0 48.8/49.6 16.7/12.2 8.7	3j j) 1.52/5.4 0.64/14.2 0.44/25 <0 / 0.07 1.24 1.24 1.24 3.60 3.60 0.37 2.61(s) 35.4 2.9 24.1 24.1 47.7 47.7 41.8
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] ¹ H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCH (sept) k) - BCH (s) - Me von X ¹¹ B-NMR (s) ¹³ C-NMR, SiMe ₃ (q) - NCMe (q) k) - NC (d) k) - BC - Me von X (q) Formel M [g/mcl]]	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 1.17 3.45 3.45 0.23 0.99(t) 36.9 2.8 24.8 24.8 24.8 24.8 46.4 9.5 14.4 C ₁₇ H ₄₃ BN ₂ Si ₂	3g 9) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc) 3.64(mc) 0.19 1.09(s) 33.1 3.2/2.7 22.6/21.3 24.0/25.5 544.0/43.8 48.0/46.6 7.2 29.0/28.7 C1.9H4.BNOSi2	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23 3.64 / *33 2.7/1.1 22.6 24.3 44.0 48.0 7.1 / C ₂₁ H ₄₀ BNOSi ₂	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50 3.88 0.31 0.39(s) 45.4 2.3/0.8 21.6 24.6/25.7 44.6/44.0 48.8/49.6 16.7/12.2 8.7 C1.Ha.BNSi2	3j j) 1.52/5.4 0.64/14.2 0.44/25 <0 / 0.07 1.24 1.24 1.24 3.60 3.60 0.37 2.61(s) 35.4 2.9 24.1 47.7 47.7 41.8 C16H39BN2Si2
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] ¹ H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCH (sept) k) - BCH (s) - NCMe (g) k) - NCMe (q) k) - NC (d) k) - BC - Me von X (q) Formel M [g/moll] 0 Ber (Gef	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 1.17 3.45 3.45 0.23 0.99(t) 36.9 2.8 24.8 25.1 2	3g 9) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc) 3.64(mc) 0.19 1.09(s) 33.1 3.2/2.7 22.6/21.3 24.0/25.5 44.0/43.8 48.0/46.6 7.2 29.0/28.7 C1_5H_4_BNOS1_2 369.6 1.25(21.2)	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23 3.64 / *33 2.7/1.1 22.6 24.3 44.0 48.0 7.1 / C ₂₁ H ₄₀ BNOSi ₂ 389.5 (4.25)((1.5))	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50 3.88 0.31 0.39(s) 45.4 2.3/0.8 21.6 24.6/25.7 44.6/44.0 48.8/49.6 16.7/12.2 8.7 C1.4HaeBNSi2 285.4	3j j) 1.52/5.4 0.64/14.2 0.44/25 (0 0.07 1.24 1.24 1.24 3.60 0.37 2.61(s) 35.4 2.9 24.1 24.1 47.7 47.7 41.8 C16H30BN2Si2 326.5 50 00 (50 00)
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] ¹ H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCH (sept) k) - BCH (s) - NCMe (g) k) - NCMe (q) k) - NC (d) k) - BC - Me von X (q) Formel M [g/mol1] C Ber./Gef.	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 3.45 3.45 3.45 0.23 0.99(t) 36.9 2.8 24.9 25.9 21.2 25.9 21.2 25.9 21.2 25.9 2	3g 9) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc) 3.64(mc) 0.19 1.09(s) 33.1 3.2/2.7 22.6/21.3 24.0/25.5 44.0/43.8 48.0/46.6 7.2 29.0/28.7 C1.5H4.BNOSi2 369.6 61.75/61.31 1.207	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23 3.64 / *33 2.7/1.1 22.6 24.3 44.0 48.0 7.1 / C ₂₁ H ₄₀ BNOSi ₂ 389.5 64.75/64.50	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50 3.88 0.31 0.39(s) 45.4 2.3/0.8 21.6 24.6/25.7 44.6/44.0 48.8/49.6 16.7/12.2 8.7 C1.4HaeBNSi2 285.4 58.91/56.81 12.7 (1.0) 20.5	3j j) 1.52/5.4 0.64/14.2 0.44/25 (0 0.07 1.24 1.24 3.60 3.60 0.37 2.61(s) 35.4 2.9 24.1 24.1 47.7 47.7 41.8 C1sH3sBN2Si2 326.5 58.86/59.26
Edukt 1b,c [g/mmol] Edukt HX [g/mmol] Ausbeute [g/%] Schmp. [°C] Isomere I, II [%/%] ¹ H-NMR, SiMe ₃ (s) - NCMe (d) k) - NCH (sept) k) - BCH (s) ¹ B-NMR (s) ¹ C-NMR, SiMe ₃ (q) - NCMe (q) k) - NC (d) k) - BC - Me von X (q) Formel M [g/moll] C Ber./Gef. H Ber./Gef.	3f f) 1.30/4.8 0.70/9.6 1.05/64 / 0.07 1.17 1.17 1.17 3.45 3.45 0.23 0.99(t) 36.9 2.8 24.2 5 59.61/59.91 12.64/12.44 24.8 25.8 29.61/59.91 12.64/12.44 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 25.8	3g 9) 1.02/3.8 0.38/3.8 0.57/41 59-61 69/31 0.10/0.06 1.10/0.98 1.23/1.27 3.14(mc) 3.64(mc) 0.19 1.09(s) 33.1 3.2/2.7 22.6/21.3 24.0/25.5 44.0/43.8 48.0/46.6 7.2 29.0/28.7 C1sH44BNOS12 369.6 61.75/61.31 12.00/12.27	3h h) 0.90/3.3 0.40/3.3 0.52/40 87/13 -0.02/0.11 1.14 1.40 3.23 3.64 / *33 2.7/1.1 22.6 24.3 44.0 48.0 7.1 / C ₂₁ H ₄₀ BNOSi ₂ 389.5 64.75/64.50 10.35/10.49	3i i) 2.10/5.2 0.56/15.4 1.11/75 15 85/15 0.03 1.11 1.19 3.50 3.88 0.31 0.39(s) 45.4 2.3/0.8 21.6 24.6/25.7 44.6/44.0 48.8/49.6 16.7/12.2 8.7 C1.4H3eBNS12 285.4 58.91/56.81 12.71/12.90	3j j) 1.52/5.4 0.64/14.2 0.44/25 (0 / 0.07 1.24 1.24 1.24 3.60 3.60 0.37 2.61(s) 35.4 2.9 24.1 24.5 58.86/59.26 12.04/12.37 20.1 24.1 24.37 24.1 24.1 24.1 24.1 24.1 24.1 25.1

a) NMR: Temp. $-60^{\circ}C(^{1}H)$, $-30^{\circ}C(^{13}C)$; $^{1}H-NMR(30^{\circ}C)$: $\delta = 0.08$ (s, 18H), 0.41 (s, 1H), 1.14, 1.31 (2d, 12H), 3.4 - 4.1 (2H). - b) NMR: Temp. $-60^{\circ}C(^{1}H)$, $-30^{\circ}C(^{13}C)$; $^{1}H-NMR(60^{\circ}C)$: $\delta = 0.13$ (s, 18H), 0.79 (s, 1H), 1.21, 1.31 (2d, 12H), 3.6 - 4.2 (2H). - c) NMR: Lsgm. C₇D₆(¹H); Temp. $-30^{\circ}C(^{1}H, ^{13}C)$; Zuordnung zu I/II willkürlich; $^{1}H-NMR(110^{\circ}C)$: $\delta = 0.07$ (s, 18H), 0.03(s, 1H), 1.09 (d, 12H), 3.35 (breit, 5H). - d) NMR: Lsgm. C₇D₆(¹H); NMR für CH von OiPr: $\delta(^{1}H) = 4.06$ (sept, 1H), $\delta(^{13}C) = 65.1$, 65.7 (2d, 90:10); Unterscheidung NiPr und OiPr in $^{1}H-NMR$: Je 2 NiPr-Dubletts und -Septetts koaleszieren beim Erhitzen. - e) NMR: Temp. $-30^{\circ}C(^{13}C)$. - f) NMR: Temp. $-30^{\circ}(^{13}C)$; 3f sublimiert bei 140°C/760 Torr; NMR für CH₂ von Et: $\delta(^{1}H) = 2.96$ (q, 4H); $\delta(^{13}C) = 40.7(1)$. - g) NMR für H₂C=C(tBu)O (Wertepaare im Verhältnis 69:31): $\delta(^{1}H) = 3.72$ (mc, 1H), 4.16/4.00 (2d, 1H), $\delta(^{13}C) = 36.1/36.2$ (2s, tBu), 88.4/84.9 (2dd, C-2), 166.8/166.6 (2s, C-1). - h) Produktgemisch 3h/7d; NMR für H₂C=C(Ph)O (Wertepaare im Verhältnis 87:13): $\delta(^{1}H) = 4.44/4.20$ (2d, 1H), 4.98/4.84 (2d, 1H), 7.2 - 7.7 (Ph); $\delta(^{13}C) = 95.5/88.5$ (2dd, C-2), 157.4/156.0 (2s, C-1), 126.1, 126.3, 128.1, 138.4 (3d, 1s, Ph). - i) Edukte: 5, HCl; NMR: Bei $-30^{\circ}(^{13}C)$; keine auswertbaren Aufspaltungen von $\delta(^{1}H)$ bei tiefer Temperatur. - j) Eduktmischung 1c/12: 2.0 g (7.1 mmol); NMR: Lsgm. C₆D₆; NMR für (CH₂)₃: $\delta(^{1}H) = 1.3 - 1.8; \delta(^{13}C) = 15.0, 31.9$ (2t). - k) Werte in oberer und unterer Zeile: *E*- und *Z*- oder *Z*- und *E*-Isomere bezüglich der B=N-Bindung. RR'CO gehen aus Tab. 2 hervor. Nach ihrer Vereinigung in ca. 10 ml Hexan bei Raumtemp. wird entweder bei Raumtemp. (7a: 15 h, 7b: 15 h, 7g: 24 h, 7h: 2 h) oder bei $50 \,^{\circ}$ C (7c: 24 h, 7d: 70 h, 7e: 90 h) oder bei $60 \,^{\circ}$ C (7f: 7 d) oder bei $69 \,^{\circ}$ C (7i: 70 h) gerührt. Das Produkt 7e fällt bei Raumtemp. aus der Reaktionslösung aus, wird filtriert und mit wenig Pentan gewaschen, die übrigen Reaktionslösungen werden i. Vak. zur Trockne gebracht, die Rohprodukte aus Pentan mehrmals kristallisiert und zwar 7g, i bei $-18 \,^{\circ}$ C, die übrigen bei $-80 \,^{\circ}$ C. Weitere experimentelle Angaben findet man in Tab. 2.

(Diisopropylamino)[2-dimethylamino)-1-(trimethylsilyl)ethenyl](trimethylsilyloxy)boran (8): Mit 1.04 g (3.9 mmol) 1b und 0.56 g (7.7 mmol) Dimethylformamid verfährt man wie bei 7a und erhält 0.95 g (72%) 8, Schmp. 97°C. – ¹H-NMR: $\delta = 0.04$, 0.08 (2s, je 9 H, 2 SiMe₃), 0.98, 1.01 (2d, J = 6.7 Hz, je 3 H, NCMe), 1.22 (d, J = 6.8 Hz, 6H, NCMe), 2.74 (s, 6H, NMe₂), 3.07, 3.83 (2 sept, J = 6.8, 6.7 Hz, je 1 H, NCH), 6.02 (s, 1 H, CH von Ethenyl). – ¹¹B-NMR: $\delta = 31.2$. – ¹³C-NMR (-30°C): $\delta = 1.1$, 2.0 (2s, SiMe₃), 20.7, 22.1, 23.1, 23.7 (4q, NCMe), 40.5 (q, NMe₂), 42.8, 48.0 (2d, NCH), 98.6 (s, BC), 148.7 (d, C-2 von Ethenyl).

C₁₆H₃₉BN₂OSi₂ (342.5) Ber. C 56.11 H 11.48 N 8.18 Gef. C 56.44 H 11.61 N 7.85

2-(Diisopropylamino)-1-phenyl-3,3-bis(trimethylsilyl)-1,2-azaboriridin (9a): 1.20 g (4.5 mmol) 1b und 0.54 g (4.5 mmol) Phenyl-

Tab. 2. Experimentelle Daten zu den Oxaboretanen $[-O-B(NR''_2)-C(SiMe_3)_2-CRR'-]$ (7a-i): Eingesetzte Mengen, Ausbeuten, Schmelzpunkte, ¹H-, ¹¹B-, ¹³C-NMR-Verschiebungen (in ppm; durch Querstrich getrennte Werte gehören zu konstitutionell äquivalenten, aber symmetrisch inäquivalenten Atomen oder Gruppen), Summenformeln, Molmassen und mikroanalytisch bestimmte C-, H-, N-Werte

7a		7ъ		7c		7d a)		7e
Edukt 1b,c [g/mmol] Edukt RR'CO [g/mmol] Ausbeute [g/%]	3.20/11.9 0.52/11.8 2.90/78	3.50/13.0 1.60/18.6 3.80/83		0.80/3.0 0.21/3.0 0.72/70		0.90/3.3 0.40/3.3 0.40/31		1.50/5.6 1.00/5.5 1.50/60
Schmp. [°C] ¹ H-NMR, SiMe ₃ (s)	57 0.07/0.14	133		119 0.08/0.14		-0.22/0.35		192 -0.10 c)
- NCMe (d) d) - NCH (sept)	1.07/1.21 3.07/3.52	1.09/1.24 3.08/3.59		1.10/1.25/1.30 3.12/3.58		1.40/1.11/1.16 3.20/3.59		1.20/1.57 3.45/3.64
- R,R' ¹¹ B-NMR (s) ¹³ C-NMR, SiMe ₃ (q)	4.61(q), 1.49(d) 34.5 0.5/3.4	4.14(s), 0.99(s) 34.0 1.8/5.6		4.71(s), 1.73(s) ^f) 34.5 0.9/3.1		1.77(s), 7.2-7.7 *33 3.6/5.0		7.15-7.7 35.3 3.7
- NCMe (q)	21.9/22.3/ 23.2/24.0	21.4/2 23.7/2	3.0/ 3.9	20.6/21.7/22.4/ 23.8/23.9 ⁱ⁾		22.0/22.7/ 23.9/24.3		22.7/24.4
- NC (d) - BC (g) j^{j} , OC - R,R'	43.1/46.7 j) 76.9(d) 1)	43.5/4 22.2 k 27.0(q	6.6 ⁾ , 89.1(d)), 36.1(s)	43.4/46. 26.1, 81 112.4(t)	7 2(d) , 145.0(s)	43.6/47.0 31.9, 85. 34.9(q) ^m	б(в))	43.8/47.2 37.9, 88.4(s) m)
Formel M [g/mol] C Ber./Gef.	C15H36BNOS12 313.4 57.48/57.30	C18H42 355.5 60.81/	BNOSi2 60.57	C ₁₇ H ₃₀ BN 339.5 60.15/59	OSi₂	C ₂₁ H ₄₀ BNO 389.5 64.75/64.	Si₂ 50	C26H42BNOSi2 451.6 69.15/69.40
H Ber./Gef. N Ber./Gef.	4.47/4.35	3.94/3.59		4.13/4.06		3.60/3.46		3.10/3.08
	7f		7g		7h		7i	
Edukt 1b,c [g/mmol] Edukt RR'CO [g/mmol] Ausbeute [g/%]	1.00/3.7 4.50/51 0.41/31		0.76/2.7 0.61/7.1 0.41/41	b)	0.76/2.7 b 0.38/3.6 0.56/54)	0.84/3 0.71/3 1.20/8	.0 b) .9 7
Schmp. [°C] ¹ H-NMR, SiMe ₃ (s) - NCMe (d) d) - NCH (sept)	139-141 0.11/0.15 1.10/1.21/1.23 3.09/ca. 3.6		0.12/0.21 1.23 e) 3.76		-0.23/0.24 1.27/1.31 3.62/4.02	e)	-0.03 ° 1.30 e 4.02	2))
- R,R' ¹¹ B-NMR (s) ¹³ C-NMR, SiMe ₃ (q) - NCMe (g)	1.12(t), 1.59(a 33.9 3.4/4.0 21.9/22.1/	₃) g)	4.12(s), 31.7 1.8/5.5 23 5 h)	0.98(s)	5.54(s), 7 32.0 1.0/2.7 23.6/24.3	.1-7.4 h)	6.96(m 36.4 ^C 3.5 23.7/2	c), 7.32(mc)) 4.4 h)
- NC (d) - BC (s) j , OC	21.9/22.1/ 23.9/24.0 43.3/47.4 31.8/106.5(s) 15.4(x) - 56.7(x)		/ 42.7/45.2 j) 88.3(d) n) 26 9(g) 3		$\frac{1}{42.9/45.3}$ j) 79.4(d) 6.0(s) m)		/ 43.7/45.6 36.6, 86.8(s) m)	
Formel M [g/mol] C Ber./Gef. H Ber./Gef. N Ber./Gef.	$\begin{array}{c} 15.4(q), 56.7(t) & m \\ C_{17}H_{40}BNO_2Si_2 \\ 357.5 \\ 57.12/57.54 \\ 11.28/11.38 \\ 3.92/3.93 \end{array}$		C19H42BNOS12 267.5 62.09/62.03 11.52/11.60 3.81/3.81		C ₂₁ H ₃₀ BNOSi ₂ 387.5 65.09/65.07 9.88/10.26 3.61/3.54		C₂7H₄₂BNOSi₂ 463.6 69.95/69.97 9.13/9.59 3.02/2.96	

a) Produktgemisch 3h/7d. - b) Eduktmischung 1c/12: 1.00 g (3.6 mmol) (7g, i), 1.10 g (3.9 mmol) (7j). - c) ¹H-NMR in CCl_2D_2 (7e), in C_7D_8 (7i); ¹¹B-NMR in CCl_4 (7i). - d) 2 d (6H/6H) oder 3 d (6H/3H/3H). - e) $\delta = 1.3-1.9$ (7g), 1.4-1.9 (7h), 1.4-1.8 (7i) (je 3 CH_2 von $NR"_2$). - f) $\delta = 5.02$, 5.21 (2 mc für CH_2 von R'). - g) $\delta = 3.58$, 3.60 (2g für CH_2 von Et). - h) $\delta = 14.5$, 31.0 (7g), 14.5, 30.9, 31.2 (7h), 14.3, 31.2 (7i) (t, 3 CH_2 von $NR"_2$). - i) 4g für NCMe, 1g für Me von R'. - j) Stark verbreiterte Signale, bei 7a, g, h nicht auffindbar. - k) Bei -30°C. - 1) $\delta(^{13}C)$ (g) für NCMe und R'nicht unterscheidbar. - m) $\delta = 125.9$, 127.4, 128.2, 148.4 (7d), 126.6, 127.4, 127.5, 146.7 (7e), 126.6, 127.1, 127.6, 142.3 (7h), 126.6, 127.5, 146.7 (7i) (3d, 1s von Ph). - n) $\delta = 24.5$ (g, OCMe; dieser Wert ist von δ für NCMe nicht zu unterscheiden).

azid werden 6d in 5 ml Hexan gerührt. Nach Entfernen von Hexan i. Vak. wird in Pentan aufgenommen. Bei -80°C erhält man 0.11 g (7%) **9a**, Schmp. 77–9°C. – ¹H-NMR: $\delta = 0.04$ (s, 18H, SiMe₃), 1.21, 1.35 (2d, J = 6.7, 6.8, je 6H, NCMe), 3.43, 3.84 (2 sept, J =6.8, 6.7 Hz, je 1 H, NCH), 6.6-7.3 (5 H, Ph). - ¹¹B-NMR: δ = 22.0. $- {}^{13}$ C-NMR: $\delta = 0.9$ (q, SiMe₃), 22.5, 25.6 (2q, NCMe), 29.9 (s, BC), 44.1, 52.1 (2d, NCH), 117.9, 128.7 (2d, CH von Ph), 146.2 (s, C-1 von Ph).

1-Benzyl-2-(diisopropylamino)-3,3-bis(trimethylsilyl)-1,2-azaboriridin (9b): Nach 7d Erhitzen von 2.18 g (8.1 mmol) 1b und 1.08 g (8.1 mmol) Benzylazid in 20 ml Hexan werden flüchtige Anteile i. Vak. entfernt. Aus Pentan kristallisieren bei - 80 °C 0.35 g (12%) **9b**, Schmp. 87°C. – ¹H-NMR (CCl₂D₂): $\delta = 0.02$ (s, 18H, SiMe₃), 1.11, 1.19 (2d, J = 6.7 Hz, je 6H, NCMe), 3.24, 3.69 (2 sept, J = 6.7 Hz, je 1 H, NCH), 4.35 (s, 2 H, NCH₂), 7.2 - 7.5 (5 H, Ph). -¹¹B-NMR (CCl₂D₂): $\delta = 26.9. - {}^{13}$ C-NMR: $\delta = 1.2$ (q, SiMe₃), 22.9, 24.9 (2q, NCMe), 30.7 (s, BC), 45.2, 52.0 (2d, NCH), 55.1 (t, NCH₂), 126.5, 128.0, 128.1 (3d, CH von Ph), 142.5 (s, C-1 von Ph).

C₂₀H₃₉BN₂Si₂ (374.5) Ber. C 64.14 H 10.50 N 7.48 Gef. C 64.24 H 10.84 N 7.50

2,3-Bis(tert-butylimino)-1-(diisopropylamino)-4,4-bis(trimethylsilyl)boretan (11): 1.31 g (4.9 mmol) 1b und 0.85 g (10.2 mmol) tert-Butylisonitril werden 2d in 10 ml Hexan gerührt. Aus Pentan erhält man bei -25°C 0.73 g (34%) gelbes 11, Schmp. 148°C. - ¹H-NMR: $\delta = 0.10$ (s, 18 H, SiMe₃), 1.26, 1.31 (2 s, je 9 H, 2 t Bu), 1.31, 1.36 (2d, J = 7.1, 7.0 Hz, je 6H, NCMe), 4.11, 4.34 (2 sept, J =7.0, 7.1, je 1 H, NCH). $-^{11}$ B-NMR: $\delta = 43.5. -^{13}$ C-NMR $(-30^{\circ}C)$: $\delta = 1.5$ (q, SiMe₃), 25.0, 25.7 (2q, NCMe), 29.6, 30.2 (2q, Me von 2 tBu), 45.6 (s, Ring-C-4), 52.0, 52.7 (2d, NCH), 55.9, 57.0 (2s, C-1 von tBu), 169.8 (s, Ring-C-3), 182.0 (s, Ring-C-2). - IR (KBr): $v = 1631 \text{ cm}^{-1}$ (C = N).

C23H50BN3Si2 (435.7) Ber. C 63.41 H 11.57 N 9.65 Gef. C 63.32 H 11.50 N 8.79

(2,6-Dimethylpiperidino)fluor[tris(trimethylsilyl)methyl]boran: Zu 40.0 g (353 mmol) 2,6-Dimethylpiperidin in 300 ml Ether gibt man bei 0°C 221 ml einer 1.6 м Lösung von Lithiumbutanid in Hexan. Nach 2 h Rühren bei Raumtemp. gibt man die Lösung zu 100.2 g (706 mmol) Diethylether – Bortrifluorid in 200 ml Hexan von -78°C. Nach 12 h Rühren bei Raumtemp. werden zunächst die Lösungsmittel i. Vak. entfernt, und dann wird das Rohprodukt bei Sdp. 40 °C/0.005 Torr vom festen LiBF4 abdestilliert. Bei 74 °C/ 64 Torr erhält man .31.4 g (55%) farbloses (2,6-Dimethylpiperidino)difluorboran, Schmp. 45-47°C, als Zwischenprodukt. - ¹H-NMR: $\delta = 1.04$ (d, 6H, Me), 1.28 (m_c, 6H, CH₂), 3.52 (m_c, 2H, CH). $-{}^{11}$ B-NMR (CCl₄): $\delta = 17.8. - {}^{13}$ C-NMR: $\delta = 14.0$ (t, 3-CH₂), 23.5 (q, Me), 30.7 (t, 4-CH₂), 44.9 (d, 2-CH).

21.7 g (135 mmol) dieses Zwischenprodukts gibt man zu einer Suspension von 23.8 g (33.5 mmol) [Li(tmeda)₂]{Li[C(SiMe_3)_3]₂}^{3,9} in 150 ml Hexan. Nach Filtrieren von LiF erbringt destillative Aufarbeitung bei Sdp. 102°C/0.005 Torr 17.8 g (71%) klares, öliges Produkt. $- {}^{1}$ H-NMR: $\delta = 0.21$ (d, ${}^{5}J_{HF} = 1.3$ Hz, 27 H, SiMe₃), 1.24 (d, J = 7.2 Hz, 6H, CMe), 1.51 (m_c, 6H, CH₂), 4.01 (m_c, 2H, CH). $-{}^{11}B-NMR$ (CCl₄): $\delta = 32.4$ (d, $J_{BF} = 64$ Hz). $-{}^{13}C-NMR$: $\delta = 5.7$ (q, SiMe₃), 14.6 (t, 4-CH₂), 24.4 (q, Ring-Me), 31.1 (t, 3-CH₂), 45.2 (d, 2-CH).

[Bis(trimethylsilyl)methylen](2,6-dimethylpiperidino)boran (1c) und 2,2,4-Trimethyl-1-(1-methyl-5-hexenyl)-3-trimethylsilyl-1,2,4azasilaboretidin (12): Die Produktmischung entsteht in völliger Analogie zur Mischung aus 1b und 2³⁾ in einem Thermolyserohr bei 470 °C. Von 5.0 g (13.4 mmol) des eben beschriebenen Fluor-(dimethylpiperidino)borans ausgehend, gelangt man durch Destillation bei Sdp. 45°C/0.005 Torr zu 1.19 g (32%) eines farblosen Gemisches im Verhältnis 76:24 (laut ¹H-NMR-Daten), dessen Zusammensetzung sich durch Destillation nicht ändert. Durch Vergleich mit 1 b/2 ist aber die Zuordnung der NMR-Daten (alle in C₆D₆) möglich. Im Gegensatz zu 1b, 2 stellen 1c und 12 Isomere dar, so daß die Elementaranalyse aussagekräftig ist.

1b: ¹H-NMR: $\delta = 0.23$ (s, 18H, SiMe₃), 1.14 (d, J = 6.5 Hz, 6H, CMe), 0.85 - 1.55 (6 H, CH₂), 2.44 (m_c, 2 H, CH). $- {}^{11}$ B-NMR: $\delta =$ 44.8. $-^{13}$ C-NMR: $\delta = 3.8$ und 4.1 (2q, 2 SiMe₃), 22.5 (q, NCMe), 24.9 (t, 4-CH₂), 35.0 (t, 3-CH₂), 54.1 (d, NCH). – IR (Kap.): v =1710 cm⁻¹ (N = ${}^{11}B = C$), 1765 (N = ${}^{10}B = C$).

12: ¹H-NMR: $\delta = -0.21$ (s, 1H, BCH), 0.12 (s, 9H, SiMe₃), 0.19 (s, 6H, SiMe₂), 0.45 (s, 3H, BMe), 0.85-1.55 (7H, NCMe, NC-CH₂-CH₂), 1.92 (m_c, 2H an C-4 von Hexenyl), 3.17 (m_c, 1H, NCH), 4.93 (d, J = 11.4 Hz, 1 H, E-H von Vinyl-CH₂), 4.99 (d, J =15.9 Hz, 1 H, Z-H von Vinyl-CH₂), 5.71 (m_c, 1 H, Vinyl-CH). - ¹¹B-NMR: $\delta = 52.1. - {}^{13}$ C-NMR: $\delta = 1.8$ (q, SiMe₃), 3.5 (q, SiMe₂), 10.8 (d, BC), 24.7, 34.6, 39.3 (3t, C-2-C-4 von Hexenyl), 50.1 (d, C-1 von Hexenyl), 114.7 (t, C-6 von Hexenyl), 138.9 (d, C-5 von Hexenyl).

 $C_{14}H_{32}BNSi_2$ (281.4) Ber. C 59.76 H 11.46 N 4.98 Gef. C 59.94 H 11.78 N 4.75

CAS-Registry-Nummern

1b: 107769-13-1 / 1c: 118375-84-1 / 2: 118375-57-8 / 3a: 118375-58-9 / 3b: 118375-59-0 / 3c: 118375-60-3 / 3d: 118375-61-4 / 3e: 118375-62-5 / 3f: 118375-63-6 / 3g: 118375-64-7 / 3h: 118375-**3i**: 118375-66-9 / **3j**: 118375-67-0 / **4**: 118375-68-1 65-8 118398-00-8 / 6a: 118375-69-2 / 6b: 118375-70-5 / 7a: 118375-71-6 / 7b: 118375-72-7 / 7c: 118375-60-7 / 7d: 118375-73-8 / 7e: 118375-74-9 / 7f: 118375-75-0 / 7g: 118375-76-1 / 7h: 118375-77-2 / 7i: 118375-78-3 / 8: 118375-79-4 / 9a: 118375-80-7 / 9b: 118398-01-9 / 10: 118375-86-3 / 11: 118375-81-8 / 12: 118375-85-2 , H₂C = C(tBu)OH: 79144-28-8 / H₂C = C(Ph)OH: 4383-15-7 / MeBBr₂: 17933-16-3 / BBr₃: 10294-33-4 / Et₂OBF₃: 109-63-7 / CH₃-CHO: 75-07-0 / (CH₃)₃CCHO: 630-19-3 / $H_2C = C(Me)CHO: 78-000$ 85-3 / PhCOCH₃: 98-86-2 / Ph₂CO: 119-61-9 / CH₃CO₂Et: 141- $78-6 / PhN_3$; $622-37-7 / PhCH_2N_3$; $622-79-7 / Me_3SiN_3$; 4648-54-8 / tBuN = C; $7188-38-7 / [Li(tmeda)_2][Li[C(SiM_3)_3]_2]$; 107743-82-8 / 2,6-Dimethylpiperidin: 504-03-0 / (2,6-Dimethylpiperidino)difluorboran: 118375-82-9 / (2,6-Dimethylpiperidino)fluor[tris(trimethylsilyl)methyl]boran: 118375-83-0

- ²⁾ B. Glaser, E. Hanecker, H. Nöth, H. Wagner, Chem. Ber. 120 (1987) 659.
- ³⁾ R. Boese, P. Paetzold, A. Tapper, Chem. Ber. 120 (1987) 1069.
- ⁴⁾ P. Paetzold, *Adv. Inorg. Chem.* **31** (1987) 123. ⁵⁾ B. Kröckert, P. Paetzold, *Chem. Ber.* **120** (1987) 631.
- ⁶⁾ N. Wiberg, P. Karampatses, C.-K. Kim, Chem. Ber. 120 (1987) 1203.
- ⁷⁾ H. B. Yokelson, A. J. Millevolte, K. J. Haller, R. West, J. Chem. Soc., Chem. Commun. 1987, 1605.
- ⁸⁾ H. Nöth, P. Fritz, Z. Anorg. Allg. Chem. 322 (1963) 297.
- 9) C. Eaborn, P. B. Hitchcock, J. D. Smith, A. C. Sullivan, J. Organomet. Chem. 263 (1984) C23.

[286/88]

C₁₇H₄₁BFNSi₃ (373.6) Ber. C 54.66 H 11.06 N 3.75 Gef. C 54.64 H 11.21 N 3.65

¹⁾ B. Glaser, H. Nöth, Angew. Chem. 97 (1985) 424; Angew. Chem. Int. Ed. Engl. 24 (1985) 416.